

Modeling 3D Objects

- A difficult problem on its own: ٠
 - 3D world on 2D displays
 - 3D manipulation using 2D (or 2.5D) devices
 - Complex: mostly done by experts
 - Issues relating to the digital representation

Challenges Specifically for

Fabrication & Printing (not just Graphics)		
 Need to actually be constru Fitting parts Finding intersections Defining connectors 	ucted or printed:	
 Checking printability Need to be physically plaus 	ible:	
 Appearance Materials Weight	Physics	
Forces	-	

More Inverse Modeling Examples

Chopper: Partitioning Models into 3D-Printable Parts Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, Wojciech Matusik ACM Transactions on Graphics, 31(6), (SIGGRAPH Asia), 2012

Make It Stand: Balancing Shapes for 3D Fabrication Romain Prévost, Emily Whiting, Sylvain Lefebvre, Olga Sorkine-Hornung, ACM Trans. Graph. 32, 4, Article 81 (July 2013)

Build-to-last: strength to weight 3D printed objects. Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014 ACM Trans. Graph. 33, 4, Article 97 (July 2014)

Specify: shape and size

Specify: balance

Specify: strength to a given weight

<section-header><section-header><section-header><image><image><list-item><list-item>

Usually Print Volume is Limited

- Typically 10cm x 10cm x 10cm up to 50cm x 40cm x 30cm
- Printing large objects requires chopping and assembly

Basic Idea

Introducing the *honeycomb-cell structure*, which is of minimal material cost while providing strength in tension.

Inverse Design Methodology

- Given a 3D shape (usually boundary surface), optimize some objective (size, balance, strength) by changing shape parameters:
 - Inner shape does not change outside appearance
 - Outer part usually want to constrain not to differ too much from original shape

Creating a Whole New Model? Yuki Koyama, Shinjiro Sueda, Emma Steinhardt, Takeo Igarashi, Ariel Shamir, Wojciech Matusik AutoConnect: Computational Design of 3D-Printable Connectors ACM Transactions on Graphics, Volume 34, Number 6, (SIGGRAPH Asia Conference Proceedings), Article No. 231, 2015 BibTeX More » **Makers Make Connectors**

Objective

- Input Two geometries
 - Position / orientation
 - Weights
 - Auxiliary parameters (e.g., free directions)
- Output A customized connector
 - Automatically generated
 - Fabricable (physics, geometry)
- No initial shape to begin with

Considering Grip Strength

Freeform Holders by Area Expansion

FEM

- Define a variational formulation
- Discretize the space
- Define basis functions
- Solve (iterative)
- Post processing

Three Key Questions for Fabrication

- 1. What is the applied load?
- 2. What are failure locations?
- 3. How to fix failures?

Stress Relief – Pinching Load

- Compute "Pinch Grip" locations:
 - Label triangle on convex hull as potential grip site for first finger
 - Cast ray in predefined direction to determine second triangle
- Filter grips based on biomechanical criteria
- Compute load using model from biomechanics

Stress Relief

- Finite Element Analysis for all orientations and grip locations
- Fixing failures
 - Automatically thicken thin parts of the object
 - Add struts to support parts of the object
 - Hollow parts of the object to reduce weight

Worst-Case Structural Analysis

- Compute failure locations by finding stresses that exceed a threshold
- No fixing discussed

Cross-sectional Structural Analysis

- Requires just the surface mesh to perform analysis of the stress
- Treats objects as if they are beams

Structural Analysis Using Finite Elements

- Choose loading conditions
- FEM Solve for each loading condition

New: Stochastic Finite Elements Succinctly describe many forces as distributions Perform Finite Element Analysis on Force Distributions Instead Stochastic Structural Analysis for Context-Aware Design and Fabrication Timothy Langlois, David I.W. Levin, Daniel Dror, Ariel Shamir, Wojciech Matusik -Conditionally Accepted SIG Asia 2016

Interactive Modeling We can still allow the user some control and design intelligent tools Three attempts to allow more interactive tools: Modeling from Photographs Modeling by (Part) Examples Customization of Models

3Sweep Motivations

- Modeling from an image is challenging for automatic computer algorithms
- It is a challenge for humans
- Can we combine forces?

3-Sweep: Image Based Object Modeling

 A simple intuitive gesture to define 3D primitives using 3 mouse sweeps:

Expert Knowledge: Geo-Semantic Constraints

- Defined in terms of major axes of the primitives.
- Support six constraint types:
 - parallelism
 - orthogonality
 - collinear anchors
 - overlapping anchors
 - coplanar anchors
 - coplanar axes

<text><text><image><image>

Summary

- 3D Modeling for the physical world involves additional challenges: Geometric and Physical Analysis
- Three points of views need to work together for effective modeling: Designer, Engineer, User
- Inverse modeling: mostly changes existing models to fit certain specification
- Interactive modeling: still very difficult for novices need for intelligent tools to assist